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When combinations of humans and 
AI are useful: A systematic review and 
meta-analysis

Michelle Vaccaro    1,2, Abdullah Almaatouq    1 & Thomas Malone    1 

Inspired by the increasing use of artificial intelligence (AI) to augment 
humans, researchers have studied human–AI systems involving different 
tasks, systems and populations. Despite such a large body of work, we lack 
a broad conceptual understanding of when combinations of humans and AI 
are better than either alone. Here we addressed this question by conducting 
a preregistered systematic review and meta-analysis of 106 experimental 
studies reporting 370 effect sizes. We searched an interdisciplinary set of 
databases (the Association for Computing Machinery Digital Library, the 
Web of Science and the Association for Information Systems eLibrary) for 
studies published between 1 January 2020 and 30 June 2023. Each study 
was required to include an original human-participants experiment that 
evaluated the performance of humans alone, AI alone and human–AI 
combinations. First, we found that, on average, human–AI combinations 
performed significantly worse than the best of humans or AI alone (Hedges’ 
g = −0.23; 95% confidence interval, −0.39 to −0.07). Second, we found 
performance losses in tasks that involved making decisions and significantly 
greater gains in tasks that involved creating content. Finally, when humans 
outperformed AI alone, we found performance gains in the combination, 
but when AI outperformed humans alone, we found losses. Limitations 
of the evidence assessed here include possible publication bias and 
variations in the study designs analysed. Overall, these findings highlight 
the heterogeneity of the effects of human–AI collaboration and point to 
promising avenues for improving human–AI systems.

People increasingly work with artificial intelligence (AI) tools in 
fields including medicine, finance and law, as well as in daily activi-
ties such as travelling, shopping and communicating. These human– 
AI systems have tremendous potential given the complementary 
nature of humans and AI—the general intelligence of humans allows 
us to reason about diverse problems, and the computational power 
of AI systems allows them to accomplish specific tasks that people 
find difficult.

A large body of work suggests that integrating human creativity, 
intuition and contextual understanding with AI’s speed, scalability 
and analytical power can lead to innovative solutions and improved 
decision-making in areas such as health care1, customer service2 and 
scientific research3. However, a growing number of studies reveal 
that human–AI systems do not necessarily achieve better results than 
the best of humans or AI alone. Challenges such as communication 
barriers, trust issues, ethical concerns and the need for effective 
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human augmentation, meaning that the average human–AI systems 
performed better than the human alone. But we did not find human–
AI synergy on average, meaning that the average human–AI systems 
performed worse than at least one of the human alone or the AI alone. 
So, in practice, if we consider only the performance dimensions the 
researchers studied, it would have been better to use either a human 
alone or an AI system alone rather than the human–AI systems studied.

While this overall result may appear discouraging, we also identified 
specific factors that did or did not contribute to synergy in human–AI 
systems. On the one hand, for example, much of the recent research in 
human–AI collaboration has focused on using AI systems to help humans 
make decisions by providing not only suggested decisions but also 
confidence levels or explanations. But we found that neither of these 
factors significantly affected the performance of human–AI systems.

On the other hand, little work has investigated the effects of task 
types and the relative performance of humans alone and AI alone. But 
we found that both factors significantly affected human–AI perfor-
mance. Our work thus sheds needed light on promising directions 
for designing future human–AI systems to unlock the potential for 
greater synergy.

Results
Our initial literature search yielded 5,126 papers, and, per the review 
process described in the Methods (see ‘Literature review’), we identi-
fied 74 that met our inclusion criteria (Supplementary Fig. 1). These 
papers reported the results of 106 unique experiments, and many of 
the experiments had multiple conditions, so we collected a total of 370 
unique effect sizes measuring the impact of human–AI collaboration 

coordination between humans and AI systems can hinder the col-
laborative process4–9.

These seemingly contradictory results raise important questions: 
when do humans and AI complement each other, and by how much? 
To address these issues, we conducted a systematic literature review 
and meta-analysis in which we quantified synergy in human–AI sys-
tems and identified factors that explain its presence (or absence) in 
different settings.

We focused on two outcomes: (1) human–AI synergy, where the 
human–AI group performs better than both the human alone and the 
AI alone, which is analogous to strong synergy in human groups10,11; 
and (2) human augmentation, where the human–AI group performs 
better than the human alone (see Supplementary Information section 
1.1 for more details).

When evaluating human–AI systems, many studies focus on 
human augmentation12–15. This measure can serve important purposes 
in contexts for which full automation cannot happen for legal, ethical 
or safety reasons and in cases when AI does not align with human val-
ues. But when talking about the potential of human–AI systems, most 
people implicitly assume that the combined system should be better 
than either alone; otherwise, they would just use the best of the two16. 
They are thus looking for human–AI synergy. In light of these consid-
erations, a growing body of work emphasizes evaluating and searching 
for synergy in human–AI systems4,8,17–20.

To evaluate synergy in human–AI systems, we analysed 370 unique 
effect sizes from 106 different experiments published between January 
2020 and June 2023 that included the performance of the human-only, 
AI-only and human–AI systems. On average, we found evidence of 
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Fig. 1 | Forest plots of all effect sizes (k = 370) included in the meta-analysis. 
a,b, The positions of the points on the x axes represent the values of the effect 
sizes, and the bars indicate the 95% CIs for the effect sizes. The colours of the 
points and bars correspond to the values of the effect sizes, with negative effect 

sizes coloured red and positive effect sizes coloured green. The black dashed 
line corresponds to an effect size of g = 0, which means that the human–AI 
system performed the same as the baseline. The point at the bottom of the graph 
represents the meta-analytic average effect size and CI.
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on task performance. Supplementary Fig. 2 highlights the descriptive 
statistics for the effect sizes in our analysis. We synthesized these data 
in a three-level meta-analytic model (see ‘Data analysis’ in Methods). 
We have made the materials required to reproduce our results publicly 
accessible through an Open Science Framework repository.

Overall levels of human–AI synergy
In our primary analyses, we focused on human–AI synergy, so we com-
pared the performance of the human–AI systems to a baseline of the 
human alone or the AI alone, whichever performed best. We found that 
the human–AI systems performed significantly worse overall than this 
baseline. The overall pooled effect was negative (g = −0.23; t92 = −2.89; 
two-tailed P = 0.005; 95% confidence interval (CI), −0.39 to −0.07) and 
considered small according to conventional interpretations21.

However, when we compared the performance of the human–AI 
systems to a different baseline—the humans alone—we found sub-
stantial evidence of human augmentation. The human–AI systems 
performed significantly better than humans alone, and this pooled 
effect size was positive (g = 0.64; t98 = 11.87; two-tailed P = 0.000; 95% 
CI, 0.53 to 0.74) and medium to large21. Figure 1 displays a forest plot of 
these effect sizes. In other words, the human–AI systems we analysed 
were, on average, better than humans alone but not better than both 
humans alone and AI alone. For effect sizes that correspond to other 
potential outcomes of interest, see Supplementary Table 3 and Sup-
plementary Fig. 3.

Heterogeneity of human–AI synergy
We also found evidence for substantial heterogeneity of effect sizes in 
our estimations of human–AI synergy (I2 = 97.7%) and human augmenta-
tion (I2 = 93.8%) (see Supplementary Tables 5 and 6 for more details). 
Our moderator analysis identified characteristics of participants, tasks 
and experiments that led to different levels of human–AI synergy and 
human augmentation, and it helps explain sources of this heterogene-
ity. Figure 2 provides a visualization of the results of meta-regressions 
with our moderators. The definitions of the subgroups for different 
moderator variables are included in Supplementary Table 2, and more 
details of the regressions for other potential outcomes of interest are 
included in Supplementary Table 7.

First, we found that the type of task significantly moderated 
human–AI synergy (F1,104 = 7.84, two-tailed P = 0.006). Among deci-
sion tasks—those in which participants decided between a finite set of 
options—the pooled effect size for human–AI synergy was significantly 
negative (g = −0.27; t104 = −3.20; two-tailed P = 0.002; 95% CI, −0.44 to 
−0.10), which indicates performance losses from combining humans 
and AI. In contrast, among creation tasks—those in which participants 
created some sort of open-response content—the pooled effect size 
for human–AI synergy was positive (g = 0.19; t104 = 1.35; two-tailed 
P = 0.180; 95% CI, −0.09 to 0.48), pointing to synergy between humans 
and AI. Even though the average performance gains for creation tasks 
were not significantly different from 0 (presumably because of the 
relatively small sample size of n = 34), the difference between losses 
for decision tasks and gains for creation tasks was statistically sig-
nificant. Relatedly, we found that the type of data involved in the 
task significantly moderated both human–AI synergy (F4,101 = 15.24, 
two-tailed P = 0.000) and human augmentation (F4,101 = 6.52, two-tailed 
P = 0.000).

Second, we found that the performance of the human and AI 
relative to each other impacted both human–AI synergy (F1,104 = 81.79, 
two-tailed P = 0.000) and human augmentation (F1,104 = 24.35, 
two-tailed P = 0.000). As shown in Fig. 2, when the human alone out-
performed the AI alone, the combined human–AI system outperformed 
both alone with an average pooled effect size for human–AI synergy 
of g = 0.46 (t104 = 5.06; two-tailed P = 0.000; 95% CI, 0.28 to 0.66), a 
medium-sized effect21. But when the AI alone outperformed the human 
alone, performance losses occurred in the combined system relative 

to the AI alone, with a negative effect size for human–AI synergy of 
g = −0.54 (t104 = −6.20; two-tailed P = 0.000; 95% CI, −0.71 to −0.37), a 
medium-sized effect21. Given the importance of this moderator, we fit 
separate meta-analytic models on the subsets of results where (1) the AI 
performed better alone and (2) the human performed better alone, and 
we report the results for human–AI synergy and human augmentation 
in Supplementary Table 4.

The performance of the human and AI relative to each other also 
affected the degree of human augmentation in the human–AI sys-
tems (F1,104 = 24.35, two-tailed P = 0.000). When the AI outperformed 
the human alone, greater performance gains tended to occur in the 
human–AI systems relative to the human alone, and the pooled effect 
size for human augmentation was positive and medium to large in 
magnitude (g = 0.74; t104 = 13.50; two-tailed P = 0.000; 95% CI, 0.63 to 
0.85) (see Supplementary Figs. 4–7 for a more detailed visualization 
of this result for decision tasks).

We also found that the type of AI involved in the experiment 
(F2,103 = 3.77, two-tailed P = 0.026) and the year of publication 
(F3,102 = 3.65, two-tailed P = 0.015) moderated human–AI synergy, and 
the experimental design moderated human augmentation (F1,104 = 4.90, 
two-tailed P = 0.029). See Supplementary Fig. 8 for a more detailed 
visualization of the effect sizes by year of publication.

The remaining moderators we investigated were not statistically 
significant for human–AI synergy or human augmentation (explana-
tion, confidence, participant type and division of labour).

Discussion
Systems that combine human intelligence and AI tools can address 
multiple issues of societal importance, from how we diagnose disease 
to how we design complex systems22–24. But some studies show that 
augmenting humans with AI can lead to better outcomes than humans 
or AI working alone24–26, while others show the opposite4,7,9. These seem-
ingly disparate results raise two important questions: How effective is 
human–AI collaboration in general? And under what circumstances 
does this collaboration lead to performance gains versus losses? Our 
study analyses over three years of recent research to provide insights 
into both of these questions.

Performance losses from human–AI collaboration
Regarding the first question, we found that, on average among recent 
experiments, human–AI systems did not exhibit synergy: the human–AI 
groups performed worse than either the human alone or the AI alone. 
This result complements the qualitative literature reviews on human–AI 
collaboration27–29, which highlight some of the surprising challenges 
that arise when integrating human intelligence and AI. For example, 
people often rely too much on AI systems (overreliance), using its sug-
gestions as strong guidelines without seeking and processing more 
information6,30,31. Other times, however, humans rely too little on AI 
(underreliance), ignoring its suggestions because of adverse attitudes 
towards automation7,31,32.

Interestingly, we found that, among this same set of experiments, 
human augmentation did exist in the human–AI systems: the human–
AI groups performed better than the humans working alone. Thus, 
even though the human–AI combinations did not achieve synergy on 
average, the AI system did on average help humans perform better. 
This result can occur, of course, because by definition the baseline 
for human–AI synergy is more stringent than that for human aug-
mentation. It may also occur, however, because obtaining human–AI 
synergy requires different forms of human–AI interaction, or because 
the recent empirical studies were not appropriately designed to elicit 
human–AI synergy.

Moderating effect of task type
With the large dataset we collected, we also performed analyses of 
factors that influence the effectiveness of human–AI collaboration. We 
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found that the type of task significantly moderated synergy in human–
AI systems: decision tasks were associated with performance losses, 
and creation tasks were associated with performance gains.

We hypothesize that this advantage for creation tasks occurs 
because even when creation tasks require the use of creativity, knowl-
edge or insight for which humans perform better, they often also 

involve substantial amounts of somewhat routine generation of addi-
tional content that AI can perform as well as or better than humans. 
For instance, generating a good artistic image usually requires some 
creative inspiration about what the image should look like, but it also 
often requires a fair amount of more routine fleshing out of the details 
of the image. Similarly, generating many kinds of text documents often 

Subgroup n Human–AI synergy
Hedges’ g with 95% CI

Human augmentation
Hedges’ g with 95% CI 

*^All e�ect sizes  370 

*^Who performs better alone? 

AI 251 

Human 127 

*Type of task
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*Task output
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Numeric 24 

Open response 34 

*^Task data 
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Multiple 78 
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2020 68 

2021 107 

2022 138 

2023 65 

*AI type
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Expert participants 
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Fig. 2 | Results from the three-level meta-regression models for the 
moderator variables. Here n is the number of included effect sizes for the 
moderator subgroup level, and the estimated effect size with the corresponding 

95% CI is shown for each level. The symbols in front of the moderators indicate 
whether there is a statistically significant difference between the subgroups for 
human–AI synergy (*) and human augmentation (∧).

http://www.nature.com/nathumbehav


Nature Human Behaviour | Volume 8 | December 2024 | 2293–2303 2297

Article https://doi.org/10.1038/s41562-024-02024-1

requires knowledge or insight that humans have and computers do 
not, but it also often requires filling in boilerplate or routine parts of 
the text as well.

With most of the decision tasks studied in our sample, however, 
both the human and the AI system make a complete decision, with 
the humans usually making the final choice. Our results suggest that 
with these decision tasks, better results might have been obtained if 
the experimenters had designed processes in which the AI systems 
did only the parts of the task for which they were clearly better than 
humans. Only 3 of the 100+ experiments in our analysis explore such 
processes with a predetermined delegation of separate subtasks to 
humans and AI. With the four effect sizes from these 3 experiments, 
we found that, on average, human–AI synergy ( g = 0.22, t104 = 0.69; 
two-tailed P = 0.494; 95% CI, −0.42 to 0.87) occurred, but the result was 
not statistically significant (see Supplementary Information section 
2.6 for a more detailed discussion of these experiments).

Moderating effect of relative human/AI performance
Interestingly, when the AI alone outperformed the human alone, sub-
stantial performance losses occurred in the human–AI systems. When 
the human outperformed the AI alone, however, performance gains 
occurred in the human–AI systems. This finding shows that human–AI 
performance cannot be explained with a simple average of the human 
alone and AI alone. In such a case, human–AI synergy could never exist33.

Most (>95%) of the human–AI systems in our dataset involved 
humans making the final decisions after receiving input from AI algo-
rithms. In these cases, one potential explanation of our result is that, 
when the humans are better than the algorithms overall, they are also 
better at deciding in which cases to trust their own opinions and in 
which to rely more on the algorithm’s opinions.

For example, Cabrera et al.34 used an experimental design in which 
participants in the human–AI condition saw a problem instance, an AI 
prediction for that instance and, in some cases, additional descriptions 
of the accuracy of the AI in this type of instance. The same experimental 
design, with the same task interface, participant pool and accuracy 
of the AI system, was used for three separate tasks: fake hotel review 
detection, satellite image classification and bird image classification. 
For fake hotel review detection, the researchers found that the AI alone 
achieved an accuracy of 73%, the human alone achieved an accuracy of 
55% and the human–AI system achieved an accuracy of 69%. In this case, 
we hypothesize that, since the people were less accurate, in general, 
than the AI algorithms, they were also not good at deciding when to 
trust the algorithms and when to trust their own judgement, so their 
participation resulted in lower overall performance than for the AI 
algorithm alone.

In contrast, Cabrera et al.34 found that, for bird image classifi-
cation, the AI alone achieved an accuracy of 73%, the human alone 
achieved an accuracy of 81% and the human–AI system achieved an 
accuracy of 90%. Here, the humans alone were more accurate than 
the AI algorithms alone, so we hypothesize that the humans were good 
at deciding when to trust their own judgements versus those of the 
algorithms, and the overall performance thus improved over either 
humans or AI alone.

Surprisingly insignificant moderators
We also investigated other moderators such as the presence of an expla-
nation, the inclusion of the confidence of the AI output and the type of 
participant evaluated. These factors have received much attention in 
recent years4,24,26,35. Given our result that, on average across our 300+ 
effect sizes, they do not impact the effectiveness of human–AI col-
laboration, we think researchers may wish to de-emphasize this line of 
inquiry and instead shift focus to the significant and less researched 
moderators we identified: the baseline performance of the human 
and AI alone, the type of task they perform, and the division of labour 
between them.

Limitations
We want to highlight some general limitations of our meta-analytic 
approach to aid with the interpretation of our results. First, our quan-
titative results apply to the subset of studies we collected through 
our systematic literature review. To evaluate human–AI synergy, we 
required that papers report the performance of (1) the human alone, 
(2) the AI alone and (3) the human–AI system. We can, however, imag-
ine tasks that a human and/or AI cannot perform alone but can when 
working with the other. Our analysis does not include such studies.

Second, we calculated effect sizes that correspond to differ-
ent quantitative measures such as task accuracy, error and quality. 
By computing Hedges’ g, a unitless standardized effect size, we can 
describe important relations among these experiments in ways that 
make them comparable across different study designs with differ-
ent outcome variables36. The studies in our dataset, though, come 
from different samples of people—some look at doctors37–39, others 
at crowdworkers4,6,34 and still others at students13,40,41—and this vari-
ation can limit the comparability of the effect sizes to a degree36. The 
measurement error can also vary across experiments. For example, 
some studies estimate overall accuracy on the basis of the evaluation 
of as many as 500 distinct images25, whereas others estimate it on the 
basis of the evaluation of as few as 15 distinct ones42. As is typical for 
meta-analyses43, in our three-level model, we weighted effect sizes as 
a function of their variance across participants, so we did not account 
for this other source of variation in measurement.

Third, although we did not find evidence of publication biases, 
it remains possible that they exist, which would impact our literature 
base and, by extension, our meta-analytic results. However, we expect 
that if there were a publication bias operating here, it would be a bias to 
publish studies that showed significant gains from combining humans 
and AI. And since our overall results showed the opposite, it seems 
unlikely that they are a result of publication bias.

Fourth, our results only apply to the tasks, processes and partici-
pant pools that researchers have chosen to study, and these configu-
rations may not be representative of the ways human–AI systems are 
configured in practical uses of AI outside the laboratory. In other words, 
even if there is not a publication bias in the studies we analysed, there 
might be a research topic selection bias at work.

Fifth, the quality of our analysis depends on the quality of the stud-
ies we synthesized. We tried to control for this issue by only including 
studies published in peer-reviewed publications, but the rigour of the 
studies may still vary in degree. For example, studies used different 
attention check mechanisms and performance incentive structures, 
which can both affect the quality of responses and thus introduce 
another source of noise into our data.

Finally, we found a high level of heterogeneity among the effect 
sizes in our analysis. The moderators we investigated account for some 
of this heterogeneity, but much remains unexplained. We hypothesize 
that interaction effects exist between the variables we coded (for 
example, explanation and type of AI), but we do not have enough stud-
ies to detect such effects. There are also certainly potential moderators 
that we did not analyse. For example, researchers mostly used their 
own experimental platforms and stimuli, which naturally introduce 
sources of variation between their studies. As the human–AI col-
laboration literature develops, we hope future work can identify more 
factors that influence human–AI synergy and assess the interactions 
among them.

A roadmap for future work: finding human–AI synergy
Even though our main result suggests that—on average—combining 
humans and AI leads to performance losses, we do not think this means 
that combining humans and AI is a bad idea. On the contrary, we think 
it just means that future work needs to focus more specifically on find-
ing effective processes that integrate humans and AI. Our other results 
suggest promising ways to proceed.

http://www.nature.com/nathumbehav
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Develop generative AI for creation tasks. In our broad sample of 
recent experiments, the vast majority (about 85%) of the effect sizes 
were for decision-making tasks in which participants chose among a 
predefined set of options. But in these cases we found that the average 
effect size for human–AI synergy was significantly negative. In contrast, 
only about 10% of the effect sizes researchers studied were for creation 
tasks—those that involved open-ended responses. And in these cases 
we found that the average effect size for human–AI synergy was posi-
tive and significantly greater than that for decision tasks. This result 
suggests that studying human–AI synergy for creation tasks—many of 
which can be done with generative AI—could be an especially fruitful 
area for research.

Much of the recent work on generative AI with human participants, 
however, tends to focus on attitudes towards the tool44,45, interviews 
or think-alouds with participants46–48, or user experience instead of 
task performance49–51. Furthermore, the relatively little work that does 
evaluate human–AI collaboration according to quantitative perfor-
mance metrics tends to report only the performance of the human 
alone and that of the human–AI combination (not the AI alone)52. This 
limitation makes evaluating human–AI synergy difficult, as the AI alone 
may be able to perform the task at a higher quality and speed than the 
participants involved in the experiment (typically crowdworkers). We 
thus need studies that further explore human–AI collaboration across 
diverse tasks while reporting the performance of the human alone, AI 
alone and human–AI system.

Develop innovative processes. Additionally, as discussed in ref. 33, 
human–AI synergy requires that humans be better at some parts of a 
task, AI be better at other parts of the task and the system as a whole be 
good at appropriately allocating subtasks to whichever partner is best 
for that subtask. Sometimes that is done by letting the more capable 
partner decide how to allocate subtasks, and sometimes it is done by 
assigning different subtasks a priori to the most capable partner (see 
Supplementary Information section 2.6 for specific examples from 
experiments in our dataset). In general, to effectively use AI in practice, 
it may be just as important to design innovative processes for how to 
combine humans and AI as it is to design innovative technologies53.

Develop more robust evaluation metrics for human–AI systems. 
Many of the experiments in our analysis evaluate performance accord-
ing to a single measure of overall accuracy, but this measure corre-
sponds to different things depending on the situation, and it omits 
other important criteria for human–AI systems. For example, as one 
approaches the upper bound of performance, such as 100% accuracy, 
the improvements necessary to increase performance usually become 
more difficult for both humans and AI systems. In these cases, we 
may wish to consider a metric that applies a nonlinear scaling to the 
overall classification accuracy and thus takes such considerations into 
account54 (Supplementary Information section 1.2).

More importantly, there are many practical situations where 
good performance depends on multiple criteria. For instance, in many 
high-stakes settings such as radiology diagnoses and bail predictions, 
relatively rare errors may have extremely high financial or other costs. 
In these cases, even if AI can, on average, perform a task more accu-
rately and less expensively than humans, it may still be desirable to 
include humans in the process if the humans are able to reduce the 
number of rare but very undesirable errors. One potential approach 
for situations like these is to create composite performance measures 
that incorporate the expected costs of various kinds of errors. The 
human augmentation measure described is also appropriate for these 
high-stakes settings.

In general, we encourage researchers to develop, employ and 
report more robust metrics that consider factors such as task com-
pletion time, financial cost and the practical implications of different 
types of errors. These developments will help us better understand 

the significance of improvements in task performance as well as the 
effects of human–AI collaborations.

Develop commensurability criteria. As researchers continue to study 
human–AI collaboration, we also urge the field to develop a set of 
commensurability criteria, which can facilitate more systematic com-
parisons across studies and help us track progress in finding areas of 
human–AI synergy. These criteria could provide standardized guide-
lines for key study design elements such as:

 (1) Task designs: establish a set of benchmark tasks that involve hu-
man–AI systems

 (2) Quality constraints: specify acceptable quality thresholds or re-
quirements that the human, AI and human–AI system must meet

 (3) Incentive schemes: outline incentive structures (for exam-
ple, payment schemes and bonuses) used to motivate human 
participants

 (4) Process types: develop a taxonomy of interaction protocols, 
user interface designs and task workflows for effective human–
AI collaboration

 (5) Evaluation metrics: report the performance of the human, AI 
and human–AI system according to well-defined performance 
metrics

To further promote commensurability and research synthesis, 
we encourage the field to establish a standardized and open reporting 
repository, specifically for human–AI collaboration experiments. This 
centralized database would host the studies’ raw data, code, system 
outputs, interaction logs and detailed documentation, adhering to 
the proposed reporting guidelines. It would thus facilitate the replica-
tion, extension and synthesis of research in the field. For example, by 
applying advanced machine learning techniques on such a dataset, 
we could develop predictive models to guide the design of human–AI 
systems optimized for specific constraints and contexts. Additionally, 
it would provide a means to track progress in finding greater areas of 
human–AI synergy.

In conclusion, our results demonstrate that human–AI systems 
often perform worse than humans alone or AI alone. But our analysis 
also suggests promising directions for the future development of more 
effective human–AI systems. We hope that this work will help guide 
progress in developing such systems and using them to solve some of 
our most important problems in business, science and society.

Methods
We conducted this meta-analysis in accord with the guidelines from 
Kitchenham55 on systematic reviews, and we followed the standards 
set forth by the Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses56.

Literature review
Eligibility criteria. Per our preregistration (https://osf.io/wrq7c/?view_
only=b9e1e86079c048b4bfb03bee6966e560), we applied the fol-
lowing criteria to select studies that fit our research questions. First, 
the paper needed to present an original experiment that evaluated 
some instance in which a human and an AI system worked together 
to perform a task. Second, it needed to report the performance of 
(1) the human alone, (2) the AI alone and (3) the human–AI system 
according to some quantitative measure(s). We therefore excluded 
studies that reported the performance of the human alone but not the 
AI alone, and likewise we excluded studies that reported the perfor-
mance of the AI alone but not the human alone. Following this stipu-
lation, we also excluded pure meta-analyses and literature reviews, 
theoretical work, qualitative analyses, commentaries, opinions and 
simulations. Third, we required the paper to include the experimental 
design, the number of participants in each condition and the standard 
deviation of the outcome in each condition, or enough information 
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to calculate it from other quantities. Finally, we required the paper to 
be written in English.

Search strategy. Given the interdisciplinary nature of human–AI 
interaction studies, we performed this search in multiple databases 
covering conferences and journals in the computer sciences, infor-
mation sciences and social sciences, as well as other fields. Through 
consultation with a library specialist in these fields, we decided to 
target the Association for Computing Machinery Digital Library, the 
Association for Information Systems eLibrary and the Web of Science 
Core Collection for our review. To focus on current forms of AI, we 
limited the search to studies published between 1 January 2020 and 
30 June 2023.

To develop the search string, we began by distilling the facets 
of studies that evaluated the performance of a human–AI system. 
We required the following: (1) a human component, (2) a computer 
component, (3) a collaboration component and (4) an experiment 
component. Given the multidisciplinary nature of our research ques-
tion, papers published in different venues tended to refer to these 
components under various names8,12,13,57,58. For broad coverage, we 
compiled a list of synonyms and abbreviations for each component 
and then combined these terms with Boolean operations, resulting in 
the following search string:

 (1) Human: human OR expert OR participant OR humans OR ex-
perts OR participants

 (2) AI: AI OR ‘artificial intelligence’ OR ML OR ‘machine learning’ OR 
‘deep learning’

 (3) Collaboration: collaborate OR assist OR aid OR interact OR help
 (4) Experiment: ‘experiment’ OR ‘experiments’ OR ‘user study’ OR 

‘user studies’ OR ‘crowdsourced study’ OR ‘crowdsourced stud-
ies’ OR ‘laboratory study’ OR ‘laboratory studies’

The search term was (1) AND (2) AND (3) AND (4) in the abstract. 
See Supplementary Table 1 for the exact syntax for each database.

To further ensure comprehensive coverage, we also conducted 
a forward and backward search on all studies we found that met our 
inclusion criteria.

Data collection and coding. We conducted the search in each of 
these databases in July 2023. To calculate our primary outcome of 
interest—the effect of combining human intelligence and AI on task 
performance—we recorded the averages and standard deviations of 
the task performance of the human alone, the AI alone, and the human 
and AI working with each other, as well as the number of participants 
in each of these conditions (see Supplementary Information section 
1.3 for details).

Many authors reported all of these values directly in the text of the 
paper. A notable number, however, reported them indirectly by provid-
ing 95% CIs or standard errors instead of the raw standard deviations. 
For these, we calculated the standard deviations using the appropriate 
formulas59. Additionally, multiple papers did not provide the exact 
numbers needed for such formulas, but the authors made the raw data 
of their study publicly accessible. In these cases, we downloaded the 
datasets and computed the averages and standard deviations using 
Python (v.3.11.9) or R (v.2023.06.0+421). If relevant data were only pre-
sented in the plots of a paper, we contacted the corresponding author 
to ask for the numeric values. If the authors did not respond, we used 
WebPlotDigitizer60 to convert plotted values into numerical values. For 
papers that conducted an experiment that met our inclusion criteria 
but did not report all the values needed to calculate the effect size, we 
also contacted the corresponding author directly to ask for the neces-
sary information. If the author did not respond, we could not compute 
the effect size for the study and did not include it in our analysis.

We considered and coded for multiple potential moderators of 
human–AI performance: (1) publication date, (2) preregistration status, 

(3) experimental design, (4) data type, (5) task type, (6) task output, (7) 
AI type, (8) AI explanation, (9) AI confidence, (10) participant type and 
(11) performance metric. See Supplementary Table 2 for a description 
of each of these moderator variables. The additional information we 
recorded served descriptive and exploratory purposes.

Many papers conducted multiple experiments, contained multiple 
treatments or evaluated performance according to multiple measures. 
In such cases, we assigned a unique experiment identification number, 
treatment identification number and measure identification number 
to the effect sizes from the paper. Note that we defined experiments 
on the basis of samples of different sets of participants.

Data analysis
Calculation of effect size. We computed Hedges’ g to measure the 
effect of combining human intelligence and AI on task performance61. 
For strong synergy, Hedges’ g represents the standardized mean dif-
ference between the performance of the human–AI system and that 
of the baseline, which can be the human alone or AI alone, whichever 
performs better on average. For human augmentation, Hedges’ g rep-
resents the standardized mean difference between the performance 
of the human–AI system and the baseline of the human alone.

We chose Hedges’ g as our measure of effect size because it is unit-
less, so it allows us to compare human–AI performance across different 
metrics, and it corrects for upward bias in the raw standardized mean 
difference (Cohen’s d)61. See Supplementary Information section 1.4 
for more details about this calculation.

Meta-analytic model. The experiments from the papers we analysed 
varied considerably. For example, they evaluated different tasks, 
recruited participants from different backgrounds and employed 
different experimental designs. Since we expected substantial 
between-experiment heterogeneity in the true effect sizes, for our 
analysis we used a random-effects model that accounts for variance in 
effect sizes that comes from both sampling error and ‘true’ variability 
across experiments62.

Additionally, some of the experiments we considered generated 
multiple dependent effect sizes: they could involve multiple treatment 
groups, and they could assess performance according to more than one 
measure, for example. The more commonly used meta-analytic models 
assume independence of effect sizes, which makes them unsuitable 
for our analysis63. We thus adopted a three-level meta-analytic model 
in which effect sizes are nested within experiments, so we explicitly 
took the dependencies in our data into account in the model63,64. Fur-
thermore, we used robust variance estimate methods to compute 
consistent estimates of the variance of our effect size estimates and, 
relatedly, standard errors, CIs and statistical tests, which account for 
the dependency of sampling errors from overlapping samples that 
occurred in experiments that compared multiple treatment groups 
to a single control group65. When evaluating the significance of our 
results, we applied the Knapp and Hartung adjustment and computed 
a test statistic, standard error, P value and CI based on the t distribu-
tion with k − p degrees of freedom, where k denotes the number of 
effect size clusters (that is, the number of experiments) and p denotes 
the number of coefficients in the model. To perform our moderator 
analyses, we conducted separate meta-regressions for each of our 
moderator variables.

To interpret the degree of heterogeneity in our effect sizes, we 
calculated the popular I2 statistic following ref. 66, which quantifies 
the percentage of variation in effect sizes that is not from sampling 
error. Furthermore, to distinguish the sources of this heterogeneity, 
we also calculated multilevel versions of the statistic, following ref. 64.

Bias tests
In the context of our meta-analysis, publication bias may occur if 
researchers publish experiments that show evidence of significant 
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human–AI synergy more frequently than those that do not. Such 
actions would affect the data we collected and distort our findings. 
To evaluate this risk, we adopted multiple diagnostic procedures out-
lined by Viechtbauer and Cheung67. First, we created funnel plots that 
graph the observed effect sizes on the x axis and the corresponding 
standard errors on the y axis68. In the absence of publication bias, we 
expect the points to fall roughly symmetrically around the y axis. We 
enhanced these plots with colours indicating the significance level 
of each effect size to help distinguish publication bias from other 
causes of asymmetry69. A lack of effect sizes in regions of statistical 
non-significance points to a greater risk of publication bias. We visually 
inspected the plots and performed Egger’s regression test70 as well as 
the rank correlation test71 to evaluate the results in the funnel plots. 
These tests examine the correlation between the observed effect sizes 
and their associated sampling variances. A high correlation indicates 
asymmetry in the funnel plot, which may stem from publication bias.

Supplementary Fig. 9 displays the funnel plot of the included 
effect sizes, and we did not observe significant asymmetry or regions 
of missing data in the plot for our primary outcome, human–AI synergy. 
Egger’s regression did not indicate evidence of publication bias in the 
sample (β = −0.67; t104 = −0.78; two-tailed P = 0.438; 95% CI, −2.39 to 
1.04), nor did the rank correlation test (τ = 0.05, two-tailed P = 0.121). 
Taken as a whole, these tests suggest that our results for human–AI 
synergy are robust to potential publication bias.

Importantly, however, we did find potential evidence of publica-
tion bias in favour of studies that report results in which the human–AI 
system outperforms the human alone (human augmentation). In this 
case, Egger’s regression does point to publication bias in the sample 
(β = 1.96; t104 = 3.24; two-tailed P = 0.002; 95% CI, 0.76 to 3.16), as does 
the rank correlation test (τ = 0.19, two-tailed P = 0.000). Note that we 
did not try to correct for potential publication bias to preserve the 
integrity of the original data and maintain transparency in our report-
ing. Many proposed adjustment methods can also lead to overcorrec-
tion and distort results72.

The discrepancy between the symmetry in the funnel plot for 
human–AI synergy versus asymmetry in the funnel plot for human aug-
mentation may reflect how many researchers and journals implicitly 
assume an interest in human augmentation, comparing the human–AI 
system to the human alone.

Sensitivity analysis
For our primary analysis, we developed a three-level meta-analytic 
model that accounted for variance in the observed effect sizes (first 
level), variance between effect sizes from the same experiment (sec-
ond level) and variance between experiments (third level). We then 
calculated cluster-robust standard errors, CIs and statistical tests for 
our effect size estimates in which we defined clusters at the level of 
the experiment. This model accounts for the dependency in effect 
sizes that result from evaluating more than one treatment against a 
common control group and assessing performance according to more 
than one measure. It does, however, consider the experiments in our 
analysis as independent from each other, even if they come from the 
same paper. We find this assumption plausible because the experi-
ments recruited different sets of participants and entailed different 
tasks or interventions.

As a robustness check, though, we performed a sensitivity 
re-analysis in which we clustered at the paper level instead of the experi-
ment level. This multilevel model accounts for variance in the observed 
effect sizes (first level), variance between effect sizes from the same 
paper (second level) and variance between papers (third level). We 
still calculated cluster-robust standard errors, CIs and statistical tests 
for our effect size estimates in which we defined clusters at the level of 
the experiment because the participant samples overlapped only on 
the level of the experiment. Using this approach, we found a compa-
rable overall effect size for human–AI synergy (g = −0.22; t67 = −2.46; 

two-tailed P = 0.017; 95% CI, −0.41 to −0.04) and for human augmen-
tation (g = 0.65; t69 = 9.96; two-tailed P = 0.000; 95% CI, 0.52 to 0.78).

We also evaluated the robustness of our results to outlying and 
influential data points. To detect such data, we computed the residu-
als and Cook’s distance for each effect size. We considered residual 
values greater or less than three standard deviations from the mean as 
outliers, and following ref. 73, we considered values greater than 4/n 
as high influence, where n is the number of data points in our analysis. 
Using this approach, we identified 11 outliers for human–AI synergy 
and 9 outliers for human augmentation. We performed a sensitivity 
re-analysis on a dataset excluding these effect sizes, which resulted 
in similar effect sizes for human–AI synergy (g = −0.25; t104 = −3.45; 
two-tailed P = 0.001; 95% CI, −0.39 to −0.11) and human augmentation 
(g = 0.60; t104 = 12.60; two-tailed P = 0.000; 95% CI, 0.50 to 0.69).

Additionally, we conducted leave-one-out analyses, in which we 
performed a series of sensitivity re-analyses on the different subsets of 
effect sizes obtained by leaving out one effect size in our original data-
set. We also conducted leave-one-out analyses at the experiment and 
publication levels. These tests show how each effect size, experiment 
and publication affect our overall estimate of the effect of human–AI 
collaboration on task performance. Summary effect sizes for human–AI 
synergy ranged from −0.28 to −0.19 with two-tailed P < 0.05 (0.000 to 
0.019) in all cases, indicating the robustness of our results to any single 
effect size, experiment or paper; likewise, summary effect sizes for 
human augmentation ranged from 0.61 to 0.66 with two-tailed P < 0.05 
(0.000 to 0.000) in all cases, indicating the robustness of our results 
to any single effect size, experiment or paper.

Lastly, we conducted a sensitivity re-analysis on a dataset that 
omits the effect sizes we estimated, using either WebPlotDigitizer 
or the information provided by the authors in their paper, and again 
we found almost identical results for human–AI synergy ( g = −0.21; 
t98 = −2.59; two-tailed P = 0.011; 95% CI, −0.36 to −0.05) and human 
augmentation (g = 0.64; t98 = 11.73; two-tailed P = 0.000; 95% CI, 0.53 
to 0.75).

We performed all quantitative analysis with the R statistical pro-
gramming language, and we primarily relied on the package metafor74.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
We compiled the data used in this analysis based on the studies identi-
fied in our systematic literature review. We have made the data we col-
lected available via the project’s Open Science Framework repository 
(https://osf.io/wrq7c/?view_only=b9e1e86079c048b4bfb03bee69
66e560). In our systematic review, we searched the following databases: 
the Association for Computing Machinery Digital Library (https://
dl.acm.org/), the Web of Science (https://clarivate.com/webofscience-
group/solutions/web-of-science/) and the Association for Information 
Systems eLibrary (https://aisnet.org/page/AISeLibrary).

Code availability
We have shared the code used to conduct our analysis via the Open 
Science Framework repository (https://osf.io/wrq7c/?view_only=b9
e1e86079c048b4bfb03bee6966e560).
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